direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5×C23⋊C4, (C2×D20)⋊6C4, C23⋊1(C4×D5), (C23×D5)⋊3C4, C22⋊C4⋊22D10, C23⋊Dic5⋊4C2, C22.26(D4×D5), (C2×D4).120D10, (C22×D5).18D4, C23.D5⋊3C22, C23.4(C22×D5), (D4×C10).10C22, C23.1D10⋊4C2, (C22×C10).4C23, D10.52(C22⋊C4), (C23×D5).10C22, (C2×C4×D5)⋊2C4, (C2×C4)⋊1(C4×D5), C5⋊4(C2×C23⋊C4), (C2×D4×D5).1C2, (C2×C20)⋊1(C2×C4), (C2×C5⋊D4)⋊2C4, (C5×C23⋊C4)⋊6C2, C22.13(C2×C4×D5), (C22×C10)⋊1(C2×C4), (D5×C22⋊C4)⋊22C2, (C2×Dic5)⋊1(C2×C4), (C2×C10).19(C2×D4), (C22×D5)⋊1(C2×C4), C2.12(D5×C22⋊C4), C10.52(C2×C22⋊C4), (C2×C5⋊D4).4C22, (C5×C22⋊C4)⋊33C22, (C2×C10).108(C22×C4), SmallGroup(320,370)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — C23⋊C4 |
Generators and relations for D5×C23⋊C4
G = < a,b,c,d,e,f | a5=b2=c2=d2=e2=f4=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, ef=fe >
Subgroups: 1102 in 210 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, D5, C10, C10, C22⋊C4, C22⋊C4, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, D10, D10, D10, C2×C10, C2×C10, C2×C10, C23⋊C4, C23⋊C4, C2×C22⋊C4, C22×D4, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×D5, C22×C10, C2×C23⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, D4×D5, C2×C5⋊D4, D4×C10, C23×D5, C23.1D10, C23⋊Dic5, C5×C23⋊C4, D5×C22⋊C4, C2×D4×D5, D5×C23⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C23⋊C4, C2×C22⋊C4, C4×D5, C22×D5, C2×C23⋊C4, C2×C4×D5, D4×D5, D5×C22⋊C4, D5×C23⋊C4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)
(1 24)(2 25)(3 21)(4 22)(5 23)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(11 16)(12 17)(13 18)(14 19)(15 20)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39), (1,24)(2,25)(3,21)(4,22)(5,23)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39), (1,24)(2,25)(3,21)(4,22)(5,23)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (11,16)(12,17)(13,18)(14,19)(15,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39)], [(1,24),(2,25),(3,21),(4,22),(5,23),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(11,16),(12,17),(13,18),(14,19),(15,20),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4E | 4F | ··· | 4J | 5A | 5B | 10A | 10B | 10C | ··· | 10H | 10I | 10J | 20A | ··· | 20J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | 10 | 10 | ··· | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 10 | 10 | 10 | 20 | 4 | ··· | 4 | 20 | ··· | 20 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | ··· | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D5 | D10 | D10 | C4×D5 | C4×D5 | C23⋊C4 | D4×D5 | D5×C23⋊C4 |
kernel | D5×C23⋊C4 | C23.1D10 | C23⋊Dic5 | C5×C23⋊C4 | D5×C22⋊C4 | C2×D4×D5 | C2×C4×D5 | C2×D20 | C2×C5⋊D4 | C23×D5 | C22×D5 | C23⋊C4 | C22⋊C4 | C2×D4 | C2×C4 | C23 | D5 | C22 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 2 |
Matrix representation of D5×C23⋊C4 ►in GL6(𝔽41)
0 | 1 | 0 | 0 | 0 | 0 |
40 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 40 | 40 | 40 | 9 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 9 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 32 |
0 | 0 | 23 | 0 | 23 | 40 |
G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,1,0,0,0,0,40,0,0,0,0,1,40,0,0,0,0,0,9,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,40,0,0,0,1,0,40,0,0,0,0,0,40,0,0,0,0,0,9,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,23,0,0,0,40,1,0,0,0,0,0,1,23,0,0,0,0,32,40] >;
D5×C23⋊C4 in GAP, Magma, Sage, TeX
D_5\times C_2^3\rtimes C_4
% in TeX
G:=Group("D5xC2^3:C4");
// GroupNames label
G:=SmallGroup(320,370);
// by ID
G=gap.SmallGroup(320,370);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,219,58,570,438,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^2=f^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,e*f=f*e>;
// generators/relations